The size distribution of conspecific populations: the peoples of New Guinea

Proc Biol Sci. 2000 May 7;267(1446):947-52. doi: 10.1098/rspb.2000.1095.

Abstract

The size distribution of the language populations in New Guinea, which represent over 15% of the world's languages, is analysed using models analogous to the resource division models of species abundance distribution in ecological communities. A model distribution of resource segments reflecting population size is created by repeated selection of an existing resource segment and its division into two. We found that any dependency of the selection probability on the size of the segment generated negatively skewed abundance distributions after log transformation. Asymmetric segment division further exacerbated the negative skewness. Size-independent selection produced lognormal abundance distributions, irrespective of the segment division method. Size-dependent selection and asymmetric division were deemed reasonable assumptions since large language populations are more likely to generate isolates, which develop into new populations, than small ones, and these isolates are likely to be small relative to the progenitor population. A negatively skewed distribution of the log-transformed population sizes was therefore expected. However, the observed distributions were lognormal, scale invariant for areas containing between 100 and over 1000 language populations. The dynamics of language differentiation, as reflected by the models, may therefore be unimportant relative to the effect of variable growth rates among populations. All lognormal distributions from resource division models had a higher variance than the observed one, where half of the 1053 populations had between 350 and 3000 individuals. The possible mechanisms maintaining such a low variance around a modal population size of 1000 are discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Biological Evolution
  • Ethnicity
  • Humans
  • Language*
  • Models, Biological
  • New Guinea
  • Population Density*