A non-invasive method for measuring preimplantation embryo physiology

Zygote. 2000 Feb;8(1):15-24. doi: 10.1017/s0967199400000782.

Abstract

The physiology of the early embryo may be indicative of embryo vitality and therefore methods for non-invasively monitoring physiological parameters from embryos could improve preimplantation diagnoses. The self-referencing electrophysiological technique is capable of non-invasive measurement of the physiology of individual cells by monitoring the movement of ions and molecules between the cell and the surrounding media. Here we use this technique to monitor gradients of calcium, potassium, oxygen and hydrogen peroxide around individual mouse preimplantation embryos. The calcium-sensitive electrode in self-referencing mode identified a region of elevated calcium concentration (approximately 0.25 pmol) surrounding each embryo. The calcium gradient surrounding embryos was relatively steep, such that the region of elevated calcium extended into the medium only 4 microns from the embryo. By contrast, using an oxygen-sensitive electrode an extensive gradient of reduced dissolved oxygen concentration was measured surrounding the embryo and extended tens of micrometres into the medium. A gradient of neither potassium nor hydrogen peroxide was observed around unperturbed embryos. We also demonstrate that monitoring the physiology of embryos using the self-referencing technique does not compromise their subsequent development. Blastocyts studied with the self-referencing technique implanted and developed to term at the same frequency as did unexamined, control embryos. Therefore, the self-referencing electrode provides a valuable non-invasive technique for studying the physiology and pathophysiology of individual embryos without hindering their subsequent development.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blastocyst / physiology*
  • Calcium / analysis
  • Electrophysiology / methods*
  • Embryonic and Fetal Development
  • Female
  • Hydrogen Peroxide / analysis
  • Ion-Selective Electrodes
  • Mice
  • Mice, Inbred Strains
  • Oxygen / analysis
  • Potassium / analysis

Substances

  • Hydrogen Peroxide
  • Potassium
  • Oxygen
  • Calcium