Transforming JB6 cells exhibit enhanced integrin-mediated adhesion to osteopontin

J Cell Biochem. 2000 Apr;78(1):8-23.

Abstract

Transformation of preneoplastic epidermal JB6 cells with tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is an in vitro model of late-stage tumor promotion. Osteopontin (OPN) is a secreted, adhesive protein that is highly expressed in JB6 cells with TPA treatment, and its expression persists for at least 4 days, which is the time required for subsequent expression of transformed phenotype. These observations suggest that OPN may play a role in promoting JB6 cell transformation. To function in transformation of JB6 cells, OPN must bind to the surface of the JB6 cell and subsequently signal within the cell. Therefore, we investigated whether JB6 cells adhere to OPN and, if so, to which surface receptors. TPA-treated JB6 cells had significantly (P < 0.05) increased adherence to OPN compared with dimethylsulfoxide-treated control cells. Enhanced attachment of JB6 cells to OPN was also observed after treatment with another tumor promoter phorbol dibutyrate but not with nontumor promoters (phorbol and 1alpha,25-dihydroxyvitamin D(3)), suggesting that tumor promoters specifically modulate attachment to OPN. The argininylglycylaspartic acid (RGD) cell-binding region of OPN mediates attachment of TPA-treated JB6 cells because RGD, but not argininylglycylglutamic acid (RGE), peptides inhibited adherence of these cells to OPN in a dose-dependent manner. Flow cytometric analyses, blocking adhesion assay using anti-alpha(v) antibody, and co-immunoprecipitation assay all indicated that TPA-treated cells had similar levels of alpha(v) and beta(5) but decreased levels of beta(1) compared with untreated cells and that cell adhesion to OPN is most likely mediated through the alpha(v)beta(5). Furthermore, calphostin C, a specific protein kinase C (PKC) inhibitor, decreased TPA-treated JB6 cell adhesion to OPN by 50%, suggesting that TPA increased integrin affinity or avidity for OPN through a PKC-mediated pathway. Collectively, these results indicate that transforming JB6 cells adhere to OPN through its RGD sequence. The most likely OPN receptor is the alpha(v)beta(5) integrin, which increases the affinity or avidity for OPN through a PKC-dependent pathway rather than increasing the number of receptors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Adhesion / drug effects
  • Cell Adhesion / physiology*
  • Cell Line
  • Cell Transformation, Neoplastic*
  • Epidermis
  • Integrins / physiology*
  • Kinetics
  • Mice
  • Osteopontin
  • Precancerous Conditions / physiopathology*
  • Receptors, Cell Surface / physiology
  • Sialoglycoproteins / physiology*
  • Tetradecanoylphorbol Acetate / toxicity
  • beta-N-Acetylhexosaminidases / metabolism

Substances

  • Integrins
  • Receptors, Cell Surface
  • Sialoglycoproteins
  • Spp1 protein, mouse
  • Osteopontin
  • beta-N-Acetylhexosaminidases
  • Tetradecanoylphorbol Acetate