NTE soluble isoforms: new perspectives for targets of neuropathy inducers and promoters

Chem Biol Interact. 1999 May 14:119-120:525-40. doi: 10.1016/s0009-2797(99)00067-8.

Abstract

Neural carboxylesterases can be discriminated by differential inhibition assays with organophosphorus compounds (OPs), paraoxon (O,O'-diethyl p-nitrophenyl phosphate) and mipafox (N,N'-diisopropyl phosphorodiamidofluoridate) being the ones used to discriminate esterases that should be either irrelevant or candidates as targets of the mechanism of induction of the organophosphorus-induced delayed polyneuropathy (OPIDP). The brain membrane-bound phenyl valerate esterase (PVase) defined by Dr Johnson in 1969 as neuropathy target esterase (NTE) and recently cloned by Dr Glynn and coworkers is termed here as particulate NTE due to its association to the membrane particulate fraction. It is considered as the target of OPIDP and is the activity measured in standard NTE assays and toxicity tests. Following the same operational criteria in the soluble fraction of sciatic nerve a paraoxon-resistant but mipafox-sensitive PVase activity was described and termed as S-NTE, with an apparent lower sensitivity to some inhibitors than particulate NTE. Two isoforms (S-NTE1 and S-NTE2) were subsequently separated by gel filtration chromatography. In a partly purified S-NTE2 preparation polypeptides were identified in western blots by labelling with S9B [1-(saligenin cyclic phospho)-9-biotinyldiaminononane], the same biotinylated OP used to label and isolate particulate NTE, but not with anti-particulate NTE antibodies. From sequential inhibition protocols, inhibitor washing-out and time course inhibition studies it is deduced that reversibility of inhibition is a new factor introducing a higher complexity in the identification of the esterases that could be candidates as targets of the mechanisms of induction and/or promotion of neuropathy. We have evidences that in sciatic nerve soluble fraction a high proportion (about 70%) of the activity that is inhibited by paraoxon in the usual concurrent assay is quickly reactivated after removing paraoxon and it is permanently inhibited by mipafox. Under this improved sequential paraoxon/mipafox inhibition procedure S-NTE represents about 50% of total PVases while in the usual concurrent assay it was only apparently about 1-2%. Moreover with such criteria, S-NTE2 isoform(s) represents about 97-99% of total S-NTE, and S-NTE1 is only a marginal amount probably resulting of a partial solubilization from particulate NTE. Fixed time inhibiton curves with variable mipafox concentration failed to discriminate more than one component. However kinetic behaviour of the time progressive inhibition cannot be explained by a simple model with a single exponential mathematical component, indicating that either the possibility of more than one component or a more complex mechanistic model should be considered. Consequently both particulate NTE and S-NTE assay protocols and their role in induction and promotion of neuropathies will need to be reviewed. Data published by Drs Lotti, Moretto and coworkers suggest that particulate NTE cannot be the target of promotion of axonopathies. The proposal that S-NTE2 could be such a target is suggestive and under collaborative biochemical and toxicological studies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Carboxylic Ester Hydrolases / antagonists & inhibitors*
  • Carboxylic Ester Hydrolases / isolation & purification*
  • Carboxylic Ester Hydrolases / metabolism
  • Enzyme Inhibitors / metabolism
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Isoenzymes / antagonists & inhibitors
  • Isoenzymes / isolation & purification
  • Isoenzymes / metabolism
  • Organophosphorus Compounds / toxicity*
  • Peripheral Nervous System Diseases / chemically induced*
  • Peripheral Nervous System Diseases / enzymology*
  • Solubility

Substances

  • Enzyme Inhibitors
  • Isoenzymes
  • Organophosphorus Compounds
  • Carboxylic Ester Hydrolases
  • neurotoxic esterase