Synthesis and characterization of pH-sensitive dextran hydrogels as a potential colon-specific drug delivery system

J Biomater Sci Polym Ed. 1999;10(5):591-608. doi: 10.1163/156856299x00504.

Abstract

pH-Sensitive dextran hydrogels were prepared by activation of dextran (T-70) with 4-nitrophenyl chloroformate, followed by conjugation of the activated dextran with 4-aminobutyric acid and cross-linking with 1,10-diaminodecane. The cross-linking efficiencies determined by mechanical measurements were in the range of 52-63%. Incorporation of carboxylpropyl groups in dextran hydrogels led to a higher equilibrium and faster swelling under high pH conditions. The swelling reversibility of hydrogels was also observed after repeated changes in buffers between pH 2.0 and 7.4. The slow rates of swelling and deswelling in response to changes in pH were attributed to the hydrophilic nature of dextran and formation of hydrogen bonds between the hydroxyl groups of dextran with water molecules. The pronounced effect of carboxylic acid content on degradation of hydrogels was observed after 4 h of incubation with dextranase and the influence significantly decreased after exposure to the enzyme for 8 h. The mechanism of bulk degradation of hydrogels under high swelling extent was substantiated using Coomassie blue protein assay. The release rate of bovine serum albumin from hydrogels was primarily determined by the swelling extent. The release rate was further enhanced by addition of dextranase in buffer solutions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Colonic Diseases / therapy*
  • Dextrans / chemical synthesis*
  • Dose-Response Relationship, Drug
  • Drug Delivery Systems*
  • Humans
  • Hydrogel, Polyethylene Glycol Dimethacrylate / chemical synthesis*
  • Hydrogen-Ion Concentration
  • Kinetics
  • Serum Albumin, Bovine / metabolism
  • Time Factors

Substances

  • Dextrans
  • Hydrogel, Polyethylene Glycol Dimethacrylate
  • Serum Albumin, Bovine