Differential knockdown of delta-opioid receptor subtypes in the rat brain by antisense oligodeoxynucleotides targeting mRNA

Antisense Nucleic Acid Drug Dev. 1999 Apr;9(2):203-11. doi: 10.1089/oli.1.1999.9.203.

Abstract

Two antisense oligodeoxynucleotides (A-ODN), targeting delta-opioid receptor mRNA (DOR) and two mismatch ODN sequences (mODN) were continuously infused for 24 days into the lateral brain ventricles of Wistar rats. The density of delta-opioid receptors in rat brain homogenates was measured by saturation binding experiments using four selective ligands, two agonists ([D-Ala2, Glu4]-deltorphin and DPDPE) and two antagonists (Dmt-Tic-OH and naltrindole), and by immunoblotting SDS solubilized receptor protein. In brain membranes of mODN or saline-infused rats, the rank order of delta-opioid receptor density, calculated by Bmax values of the four delta-opioid receptor ligands, was: [D-Ala2, Glu4]deltorphin approximately Dmt-Tic-OH approximately naltrindole (86-118 fmo/mg protein) > DPDPE (73.6+/-6.3 fmol/mg protein). At the end of the 24 day infusion of A-ODN targeting DOR nucleotide sequence 280299 (A-ODN280-299), the Bmax of DPDPE (62.4+/-3.2 fmol/mg protein) was significantly higher than that of Dmt-Tic-OH (31.5+/-3.9 fmol/mg protein). Moreover, both the Kd value for DPDPE saturation binding and the Ki value for Dmt-Tic-OH displacement by DPDPE were halved. In contrast, an A-ODN treatment targeting exon 3 (A-ODN741-760) decreased the specific binding of [D-Ala2, Glu4]deltorphin and Dmt-Tic-OH significantly less (67%-81%) than the binding of DPDPE (53%), without changes in DPDPE Ki and KD values. No A-ODN treatment modified the specific binding of the micro-opioid agonist DAMGO and of the k-selective opioid receptor ligand U69593. On the Western blot of solubilized striatum proteins, A-ODN(280-299) and A-ODN(741-760) downregulated the levels of the DOR protein, whereas the corresponding mODN were inactive. The 24-day infusion of A-ODN(280-299) inhibited the rat locomotor response to [D-Ala2, Glu4]deltorphin but not to DPDPE. Intracerebroventricular (i.c.v.) infusion of A-ODN(741-760) reduced the locomotor responses to both delta-opioid receptor agonists, whereas mODN infusion never affected agonist potencies. In conclusion, these results demonstrate that 24-day continuous i.c.v. infusion of A-ODN targeting the nucleotide sequence 280-299 of DOR can differentially knockdown delta1 and delta2 binding sites in the rat brain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / drug effects*
  • Corpus Striatum / drug effects
  • Ligands
  • Male
  • Motor Activity / drug effects*
  • Oligodeoxyribonucleotides, Antisense / pharmacology*
  • RNA, Messenger / drug effects*
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Opioid, delta / agonists
  • Receptors, Opioid, delta / drug effects*
  • Receptors, Opioid, delta / genetics
  • Thionucleotides / pharmacology

Substances

  • Ligands
  • Oligodeoxyribonucleotides, Antisense
  • RNA, Messenger
  • Receptors, Opioid, delta
  • Thionucleotides