Analysis of macrophage scavenger receptor (SR-A) expression in human aortic atherosclerotic lesions

Arterioscler Thromb Vasc Biol. 1999 Mar;19(3):461-71. doi: 10.1161/01.atv.19.3.461.

Abstract

The class A scavenger receptors (SR-As) are trimeric, integral membrane glycoproteins that exhibit unusually broad ligand-binding properties. A number of studies have suggested that these receptors may play an important role in host defense and in many macrophage-associated pathological processes, including atherosclerosis and Alzheimer's disease. The study of the expression and function of these receptors in human disease has been hampered by the lack of suitable antibodies recognizing human SR-A. This has generated questions regarding the nature of receptors responsible for scavenger receptor activity detected in a variety of cell types, including monocytes, macrophages, smooth muscle cells, and endothelial cells. To address these questions, we have produced high-titer antisera recognizing human SR-A by using mice deficient for SR-A (SR-A -/-). We show that SR-A -/- mice produce a significantly higher-titer immune response than do wild-type (SR-A +/+) littermates, with antisera of the former having a broad species reactivity and recognizing SR-A from humans, mice, and rabbits. The antisera recognize both type I and II SR-A in a wide range of immunological techniques. Using these antisera we show that the expression of SR-A protein is induced during monocyte to macrophage differentiation and that SR-A mediates 80% of the uptake of acetylated low density lipoprotein by human monocyte-derived macrophages. We also establish that human SR-A is expressed by tissue macrophages in liver and lung and by macrophage-derived foam cells within aortic atherosclerotic lesions, with little detectable expression by smooth muscle cells or aortic endothelium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / analysis
  • Actins / immunology
  • Animals
  • Antibodies
  • Aorta / chemistry*
  • Aorta / injuries
  • Aorta / pathology*
  • Aortic Diseases / genetics
  • Aortic Diseases / pathology
  • Arteriosclerosis / genetics
  • Arteriosclerosis / pathology*
  • CHO Cells
  • Catheterization
  • Cell Adhesion Molecules / analysis
  • Cell Adhesion Molecules / genetics
  • Cell Adhesion Molecules / immunology
  • Cells, Cultured
  • Cricetinae
  • Endothelium, Vascular / chemistry
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / physiology
  • Flow Cytometry
  • Gene Expression / physiology
  • Humans
  • Macrophages / chemistry
  • Macrophages / physiology
  • Mice
  • Mice, Knockout
  • Muscle, Smooth, Vascular / chemistry
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / physiology
  • Platelet Endothelial Cell Adhesion Molecule-1 / analysis
  • Platelet Endothelial Cell Adhesion Molecule-1 / immunology
  • Rabbits
  • Receptors, Immunologic / analysis*
  • Receptors, Immunologic / genetics*
  • Receptors, Immunologic / immunology
  • Receptors, Scavenger
  • Scavenger Receptors, Class A
  • Transfection

Substances

  • Actins
  • Antibodies
  • Cell Adhesion Molecules
  • MSR1 protein, human
  • Msr1 protein, mouse
  • Platelet Endothelial Cell Adhesion Molecule-1
  • Receptors, Immunologic
  • Receptors, Scavenger
  • Scavenger Receptors, Class A