Deep magnetic resonance fingerprinting based on Local and Global Vision Transformer

Med Image Anal. 2024 Jul:95:103198. doi: 10.1016/j.media.2024.103198. Epub 2024 May 13.

Abstract

To mitigate systematic errors in magnetic resonance fingerprinting (MRF), the precomputed dictionary is usually computed with minimal granularity across the entire range of tissue parameters. However, the dictionary grows exponentially with the number of parameters increase, posing significant challenges to the computational efficiency and matching accuracy of pattern-matching algorithms. Existing works, primarily based on convolutional neural networks (CNN), focus solely on local information to reconstruct multiple parameter maps, lacking in-depth investigations on the MRF mechanism. These methods may not exploit long-distance redundancies and the contextual information within voxel fingerprints introduced by the Bloch equation dynamics, leading to limited reconstruction speed and accuracy. To overcome these limitations, we propose a novel end-to-end neural network called the Local and Global Vision Transformer (LG-ViT) for MRF parameter reconstruction. Our proposed LG-ViT employs a multi-stage architecture that effectively reduces the computational overhead associated with the high-dimensional MRF data and the transformer model. Specifically, a local Transformer encoder is proposed to capture contextual information embedded within voxel fingerprints and local correlations introduced by the interconnected human tissues. Additionally, a global Transformer encoder is proposed to leverage long-distance dependencies arising from shared characteristics among different tissues across various spatial regions. By incorporating MRF physics-based data priors and effectively capturing local and global correlations, our proposed LG-ViT can achieve fast and accurate MRF parameter reconstruction. Experiments on both simulation and in vivo data demonstrate that the proposed method enables faster and more accurate MRF parameter reconstruction compared to state-of-the-art deep learning-based methods.

Keywords: Deep learning; Magnetic resonance fingerprinting; Vision Transformer.

MeSH terms

  • Algorithms*
  • Brain / diagnostic imaging
  • Deep Learning
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging* / methods
  • Neural Networks, Computer*