Harnessing Multiscale Physiochemical Interactions on Nanobiointerface for Enhanced Stress Resilience in Rice

ACS Nano. 2024 May 17. doi: 10.1021/acsnano.4c02620. Online ahead of print.

Abstract

Nanoagrochemicals present promising solutions for augmenting conventional agriculture, while insufficient utilization of nanobiointerfacial interactions hinders their field application. This work investigates the multiscale physiochemical interactions between nanoagrochemicals and rice (Oryza sativa L.) leaves and devises a strategy for elevating targeting efficiency of nanoagrochemicals and stress resilience of rice. We identified multiple deposition behaviors of nanoagrochemicals on hierarchically structured leaves and demonstrated the crucial role of leaf microarchitectures. A transition from the Cassie-Baxter to the Wenzel state significantly changed the deposition behavior from superlattice assembly, ring-shaped aggregation to uniform monolayer deposition. By fine-tuning the formulation properties, we achieved a 415.9-fold surge in retention efficiency, and enhanced the sustainability of nanoagrochemicals by minimizing loss during long-term application. This biointerface design significantly relieved the growth inhibition of Cd(II) pollutant on rice plants with a 95.2% increase in biomass after foliar application of SiO2 nanoagrochemicals. Our research elucidates the intricate interplay between leaf structural attributes, nanobiointerface design, and biological responses of plants, fostering field application of nanoagrochemicals.

Keywords: crop resilience; nanoagrochemical; nanobiointerface; self-assembly; sustainability.