Cremastranone-Derived Homoisoflavanes Suppress the Growth of Breast Cancer Cells via Cell Cycle Arrest and Caspase-Independent Cell Death

Biomol Ther (Seoul). 2023 Sep 1;31(5):526-535. doi: 10.4062/biomolther.2023.057. Epub 2023 May 25.

Abstract

Breast cancer is the most common cancer and a frequent cause of cancer-related deaths among women wordlwide. As therapeutic strategies for breast cancer have limitations, novel chemotherapeutic reagents and treatment strategies are needed. In this study, we investigated the anti-cancer effect of synthetic homoisoflavane derivatives of cremastranone on breast cancer cells. Homoisoflavane derivatives, SH-17059 and SH-19021, reduced cell proliferation through G2/M cell cycle arrest and induced caspase-independent cell death. These compounds increased heme oxygenase-1 (HO-1) and 5-aminolevulinic acid synthase 1 (ALAS1), suggesting downregulation of heme. They also induced reactive oxygen species (ROS) generation and lipid peroxidation. Furthermore, they reduced expression of glutathione peroxidase 4 (GPX4). Therefore, we suggest that the SH-17059 and SH-19021 induced the caspase-independent cell death through the accumulation of iron from heme degradation, and the ferroptosis might be one of the potential candidates for caspase-independent cell death.

Keywords: Anti-cancer; Breast cancer; Caspase-independent cell death; Cell cycle arrest; Cremastranone; Homoisoflavane.

Grants and funding

ACKNOWLEDGMENTS This work was supported by grants from the National Research Foundation funded by the Korean government, Ministry of Science, ICT, and Future Planning (NRF-2020R1I1A1A01072992, NRF-2021R1A2C1006767).